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ABSTRACT 

Several decades of continuous improvements in satellite precipitation algorithms have resulted 

in fairly accurate level-2 precipitation products for local-scale applications. Numerous studies have 

been carried out to quantify random and systematic errors at individual validation sites and 

regional networks. Understanding uncertainties at larger scales, however, has remained a 

challenge. Temporal changes in precipitation regional biases, regime morphology, sampling, and 

observation-vector information content, all play important roles in defining the accuracy of 

satellite rainfall retrievals. This study considers these contributors to offer a quantitative estimate 

of uncertainty in recently-produced global precipitation climate data records. Generated from 

inter-calibrated observations collected by a constellation of Passive Microwave (PMW) 

radiometers over the course of 30 years, this data record relies on Global Precipitation 

Measurement (GPM) mission enterprise PMW precipitation retrieval to offer a long-term global 

monthly precipitation estimates with corresponding uncertainty at 5° scales. To address changes 

in the information content across different constellation members the study develops synthetic 

datasets from GPM Microwave Imager sensor, while sampling- and morphology-related 

uncertainties are quantified using GPM’s Dual-frequency Precipitation Radar (DPR). Special 

attention is given to separating precipitation into self-similar states that appear to be consistent 

across environmental conditions. Results show that the variability of bias patterns can be explained 

by the relative occurrence of different precipitation states across the regions and used to calculate 

product’s uncertainty. It is found that at 5 spatial scale monthly mean precipitation uncertainties 

in Tropics can exceed 10%. 
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1. Introduction

Long term, homogeneous climate data records of precipitation are needed to both establish 

baselines against which future change can be detected (Xie and Arkin, 1997, Adler et al., 2003), 

as well as for validation of climate models (Tapiador et al. 2017). In Hydrology, long term time 

series are also essential to establish recurrence frameworks (Knapp et al. 2011). With a changing 

climate, and the possibility that rainfall statistics may be changing, this becomes particularly 

important. 

Current observational precipitation products may be categorized as climatological products 

that aim to construct a homogeneous time series at the expense of using all available data (i.e., 

Climate Data Records - CDRs). The gauge based Global Precipitation Climatology Centre - GPCC 

(Schneider et al. 2000, 2017) has climatological products spanning over 70 years, but is limited to 

land, and uses only the subset of rain gauges with a continuous record for the entire time series 

(e.g., Beck et al. 2005). This reduces the available global gauge network from approximately 

100,000 gauges to a mere 10,000 gauges for the 1951-2020 climatology (Schneider et al. 2008). 

Likewise, satellite products such as Global Precipitation Climatology Project – GPCP (Adler et al. 

2003) represent a climatology in that a single passive microwave sensor is used to intercalibrate 

available IR data for the complete timeseries. This differs from products such as CMORPH (Xie 

et al. 2019), GSMaP (Okamoto et al. 2005), IMERG (Huffman et al. 2020) and others, that aim to 

produce precipitation with the highest space-time resolution available, but at the expense of 

consistency in the long-term time series.   

A number of efforts have been undertaken to establish the accuracy of the products listed above 

by comparing them to each other as well as to the global model reanalysis. It was through one of 

these efforts (Adler et al. 2012), that GPCP estimated uncertainties of approximately 10% in the 

global mean precipitation. However, a requisite step in such product intercomparisons, including 

in the cited work, is the need to eliminate any products that do not converge with the ensemble 

mean to within a specified value. Masunaga et al. (2019) reported on such an intercomparison of 

widely used satellite merged products. While they found that mean values were relatively 

consistent among products, the extremes were very different.  In that study, the gauge data had 

larger disagreements in the extreme than did the different satellite products. This shows that even 
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when means agree, it may not be for the same reasons, and rain gauges have their own set of issues 

– related largely to the need to interpolate across large distances.

Uncertainties are of course central to any climate time series as all of the products have

limitations. Yet, no estimates of uncertainty currently exist beyond the product intercomparisons. 

This is likely due to the difficulty in quantifying uncertainties from first principles. In this study, 

the authors use the GPROF algorithm (Kummerow et al. 2015) to try to build an error model for a 

time series consisting of a number of different satellites – each with different channels, spatial 

resolution, equator crossing times, and potentially unresolved calibration issues. In principle, the 

GPROF algorithm can incorporate a diverse range of sensors in a fully parametric way that is 

essential to translate error characteristics from one sensor to another. The GPM program 

(Skofronick-Jackson et al. 2017; Hou et al. 2014), has already devoted significant resources to 

correct for calibration differences between spaceborne radiometers as part of the XCAL 

intercalibration effort (Berg et al. 2016). 

As with any uncertainty, discussion immediately turns to random and systematic errors. 

Unfortunately, these prove inadequate for the current study. Random errors, which will be labeled 

as algorithm errors in the subsequent discussion, reduce as the number of satellite-retrieved pixels 

(i.e., observations) increase. As true random errors, they decrease at 1/√𝑛 rate, where n is the 

number of independent pixels/observations. As with any satellite product, n is very large when 

considering long-term products (e.g., monthly global estimates) and random errors do not 

contribute significantly to the overall uncertainty. Systematic errors, on the other hand, do not 

decrease with the number of samples. However, they should be constant for each satellite and 

easily determined from ground validation studies. Unfortunately, this is not the case, as time and 

space dependent errors from sources such as time-dependent calibration changes, diurnal 

sampling, the variability in convective organization, and the sensor information content all affect 

the satellite product. These error sources have been considered in this study as they are known to 

strongly link to potential biases, although the authors acknowledge that there may be additional 

sources of uncertainty. Chapter 3 describes the sensors, algorithms, and time series that constitute 

a CDR before describing our treatment of the Random, Sampling, Convective fraction, Diurnal 

cycle, and Information content errors. Chapter 4 lists the results, followed by Discussion and 

Conclusions in Chapter 5. 
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2. Data collection and methods

To investigate satellite PMW precipitation CDR uncertainties, this study uses satellite and 

reanalysis datasets corresponding to the 34-year period – 1987 to 2020. The four data products 

considered are a) PMW observations from the intercalibrated Level 1C Tb dataset (Berg et al. 

2018), b) precipitation estimates from NASA’s GPM PMW precipitation retrieval – GPROF 

(Kummerow et al. 2015), c) precipitation estimates from GPM DPR-combined product – 

GPM_2BCMB (Olson 2017) and d) the most recent ECMWF reanalysis – ERA5 (C3S, 2017). The 

four products are interconnected and highly correlated across temporal/spatial scales (Watters et 

al 2021). PMW satellite data is limited to conical scanning microwave imagers only (see the full 

list of acronyms in Appendix A).  

a. Data collection

1) Intercalibrated Level 1C Data

The Level 1C data containing intercalibrated microwave brightness temperatures relies on 

observations from 14 conical-scanning microwave imagers launched between 1987 and 2014 

(Berg et al. 2018). Development of this data record involved quality control, corrections for cross-

track biases, view angle and geolocation errors, emissive reflector issues, solar and lunar intrusions 

into the warm load, antenna pattern spillover effects, and intercalibration of the following PMW 

imagers: GMI, TMI, SSM/I (F08, F10, F11, F13, F14, F15), SSMIS (F16, F17, F18, F19), AMSR-
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E, and AMSR2. The constellation members timeline is shown in Fig. 1, with sensor-specific 

channels listed in Table 1.  

Fig. 1 Timeline of available window channel microwave imagers. The study uses satellite climate 

precipitation record created using a total of 14 PMW sensors covering pre-TRMM, TRMM and GPM era (1987-

2020). 

Rigorous quality control has resulted in removal and/or flagging of some instruments 

observations (details available in Berg et al. 2017). SSM/I-F13 is used as a reference for 

consistency over the SSM/I-era, while GPM GMI observations are considered to be an absolute 

calibration reference for the entire Level 1C (i.e., Tbs) dataset. The Level 1C product used in this 

study is available from the NASA Precipitation Processing System (https://pmm.nasa.gov/data-

access/downloads/gpm). 

SSM/I 19.35 v/h 22.23 v 37.0 v/h 85.5 v/h 

SSMIS 19.35 v/h 22.23 v 37.0 v/h 91.65 v/h 150.0 h 183+/- 1,3,7 h 

TMI 10.65 v/h 19.35 v/h 21.3 v 37.0 v/h 85.5 v/h 

AMSR2, AMSR-E 10.65 v/h 18.7 v/h 23.8 v/h 36.5 v/h 89.0 v/h 

GMI 10.65 v/h 18.7 v/h 23.8 v 36.64 v/h 89.0 v/h 166 v/h 183 +/- 3,7 h 

Table 1 PMW instruments and frequencies [GHz] used to generate the long-term precipitation CDR 
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2) PMW precipitation dataset – GPROF algorithm

Developed in the mid-1990s at Goddard Space Flight Center, the Goddard PROFiling 

(GPROF) precipitation algorithm (Kummerow and Giglio, 1994) has been serving as the 

operational PMW precipitation retrieval at NASA Precipitation Processing System (PPS) for over 

three decades. Its fully parametric scheme ensures consistency across a constellation of cross-track 

(e.g., Kidd et al. 2016) and conical scanning sensors, including the above-mentioned radiometers. 

An operational version of the algorithm (Version 5 – V05; operational at NASA PPS during 2017-

2021 timeframe) is used in this study for production of precipitation estimates over the period of 

available brightness temperature (i.e., Level 1C) data record. While the evolution of the retrieval 

is documented in Kummerow et al. (2015), the most important algorithm properties relevant to 

this study are outlined below. 

GPROF is a Bayesian scheme relying on an a priori information to establish the relationship 

between hydrometeor profiles and observed PMW radiances. This a priori knowledge is offered 

through a database of coupled DPR-combined algorithm precipitation profiles (i.e., a state vector) 

and corresponding computed Tbs (sub-section 2.a.1) following Kummerow et al. (2011). To 

constrain the problem, the algorithm subsets the a priori database using ancillary information on 

the observed large-scale conditions, namely TPW, surface type, and 2-meter temperature (Berg et 

al. 2016). In this process, surface type is defined using SSM/I observed emissivity climatology 

(Aires et al. 2011) updated daily by NOAA’s AutoSnow product (Romanov et al. 2000), while the 

2-meter temperature and TPW come from reanalysis datasets (e.g., ERA-Interim, Dee et al. 2011

or ERA5, C3S 2017). Once the a priori information is identified, the retrieval uses a Bayesian 

scheme to calculate a weighted mean, where each database element (i.e., DPR-combined 

precipitation rate) is assigned a weight proportional to its respective probability given by Eq. (1): 

𝑟𝑟 =  
∑ 𝑟𝑖𝑤𝑖𝑖

∑ 𝑤𝑖𝑖
,     𝑤ℎ𝑒𝑟𝑒   𝑤𝑖 = 𝑒𝑥𝑝 {−0.5 [𝑇𝑏 −  𝑇𝑏𝑓

(𝑟𝑖)]
𝑇

𝑆−1  [𝑇𝑏 −  𝑇𝑏𝑓
(𝑟𝑖)]} (1) 

where, i is an element of the a priori database, S is the Tb error covariance (to account for both 

forward model and instrument errors), rr is retrieved rain rate, ri is database-element rain rate, Tb 

is the satellite FOV observed-, while Tb_f(ri) is ri-associated brightness temperature. Applicable to 

any PMW sensor, Eq (1) provides consistency of GPROF output and ensures preservation of the 

global precipitation rate distribution through its a priori reference (i.e., DPR-combined product). 
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3) Calibration and Reference Datasets 

Launched in February 2014, the GPM mission Core Observatory includes a 13-channel 

conical-scanning GPM Microwave Imager (GMI) and a Dual-frequency Precipitation Radar. The 

imager is designed to 1) serve as a calibration standard for the entire GPM PMW constellation, 

and 2) in synergy with DPR, offer a link between the passive- and active-microwave signatures of 

the atmospheric column under all weather conditions. The DPR itself, being the most advanced 

satellite precipitation radar to date, provides invaluable information on vertical profile of global 

precipitation systems. Data collected over a 5-year period (i.e., March 2014 to February 2019) are 

used in the present study. The two products of particular interest are DPR-combined level-2 

precipitation estimates (GPM_2BCMB; Olson 2017) and GMI Level 1C PMW brightness 

temperatures (Berg 2016). 

4) ECMWF Reanalysis Data – ERA5

ECMWF reanalysis data (ERA) is used at its native spatial and temporal resolution (0.28125º, 

hourly) in this study to provide: 1) information on environmental conditions and 2) the necessary 

elements for constructing idealized satellite sampling at various scales. Parameters of particular 

interest include: 2-meter Temperature (2mT), Sea-Surface Temperature (SST) and precipitation 

rate.  

b. Methodology – Defining and Assigning Uncertainties

Using the intercalibrated brightness temperature (i.e., Level 1C) data (sub-section 2.a.1) as

input, GPROF delivers a reasonably consistent and unbiased long-term data record of global 

precipitation. With a goal to provide a dataset suitable for climate applications, monthly means of 

precipitation rate are generated at 5° global grids (S65° – N65°). The spatio-temporal scale of the 

product and the intercalibration of the Level 1C input greatly mitigate random errors of the 

timeseries. To parse and estimate the remaining uncertainty, we turn our attention to the error 

sources that contribute to systematic biases in the monthly mean precipitation estimates. These 

include, although are not limited to, calibration, diurnal sampling, information content, and 

convective organization. Choosing one of many options, uncertainty (u) of a measurement is 

described using the standard deviation (i.e., variance, Var(X)) around the mean of the timeseries 
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(i.e., precipitation data record). The variance is calculated as the average of the squared differences 

from the mean: 

𝑉𝑎𝑟(𝑋) =  
1

𝑛
∑ (𝑥𝑖 −  )2𝑛

𝑖=1   ,  =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 (2) 

where  is the mean and x is an individual element of the group with the sample size n. Standard 

deviation, describing how far from the mean a group of numbers is, is given by the square root of 

the variance. After estimating each single-source uncertainty (uj), the assumption of independence 

between the individual contributors is applied allowing for the combined uncertainty (U(X)) to be 

determined using the following formula: 

𝑈(𝑋) = √∑ 𝑢𝑗
2𝑚

𝑗=1   (3)

Below we describe the methodology we used to estimate each of the m individual uncertainties. 

1) Uncertainty of Instantaneous Rainfall Estimates - Random Error Uncertainty

Random uncertainty, hereafter referred to as Bayesian uncertainty, is estimated by calculating

gridded-product standard deviations using instantaneous rate errors and DPR-combined product 

as a reference. For this purpose, the GPROF algorithm is tasked against the same data that 

comprises its a priori database. This ensures that the bias, or non-representativeness, is not a 

potential source of error, and that all the errors are truly random. The full sequence of steps consists 

of the following: i) retrieve precipitation against the a priori database, ii) create monthly global 

grids of the output and reference data, iii) compute the differences across all grid boxes, sampled 

by surface type and rainfall rate. To preserve precipitation retrieval output dependance on surface 

type, GPROF surface type maps are resampled to match the output resolution (e.g., 5º x 5º) keeping 

only 4 main surface type grid boxes: Ocean, Land, Snow and Mixed (a mix of Land and Ocean). 

To address uncertainty’s dependency on the rainfall rate itself, five balanced (i.e., equally 

populated) rain rate bins are identified: (0, 0.3, 0.9, 1.7, 3.6, inf) mm day-1. Finally, the result 

provides Bayesian uncertainty as a function of surface type, rain rate and month. The method is 

repeated for each PMW sensor in the data. 
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2) Sampling-induced Uncertainty

Sampling uncertainty (i.e., observing frequency uncertainty) is defined as a deviation from the 

true value caused by limited sampling of precipitating systems within a grid box during a time-

interval of interest. This uncertainty is driven by the satellite orbit properties and the total number 

of observations (i.e., samples) available during the sampling period. To estimate sampling 

uncertainty, modeled precipitation fields are employed in simulating a wide range of different 

sampling scenarios over a domain of choice (e.g., 5º monthly global grid). The simulations 

consider an ideal scenario, where a region of interest is sampled continuously, as a reference which 

is then compared against other sub-sampled cases to estimate uncertainty as a function of month 

and sampling frequency. 

To ensure intra-annual variability does not play an important role, a 5-year GPM-era (2014 - 

2018) period of ERA5 precipitation fields, at 1-hour 0.28125º resolution, is used to calculate the 

sampling uncertainty. The high-resolution hourly data is first gridded into 5 x 5 hourly global 

grids, for four different surface types (ocean, land, snow and mixed), and split into monthly 

timeseries with up to 740 individual hourly samples (24 hours for 30 days). These timeseries are 

then used to derive 1) adjustment factor for any bias caused by a satellite drift, and 2) uncertainty 

of caused by suboptimal sampling. In the first step, monthly means corresponding to different 

sampling local times are recorded to be applied to any satellite products that suffer from significant 

drift in Equatorial crossing time (e.g., DMSP sensor series). In the second step, the timeseries are 

randomly sampled to simulate sub-sampled monthly records. The process is repeated until each 

sampling frequency (1 to 740) of the monthly intervals is simulated 100 times. Next, the simulated 

timeseries are used to calculate monthly means at the 5 x 5 grid. The resulting means are assessed 

against the reference, providing a distribution (sample size 100) of the differences for each 

sampling frequency. Finally, using three-month centered data, standard deviations of these 

distributions define the sampling uncertainty of monthly precipitation product.  

3) Diurnal Cycle Uncertainty

Accounting for the variability in sampling frequency across the globe, as described above, 

provides an estimate of uncertainty induced by smoothing of the precipitation diurnal cycle. 

However, regardless of how frequent the sampling is, the variability of the diurnal cycle itself also 

contributes to the overall uncertainty. To assess its contribution to the overall uncertainty, the same 
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GPM-era period of native-resolution hourly ERA5 data is employed once again. This time the 

hourly data is gridded into monthly 5 x 5 grid boxes for each hour of a month, keeping track of 

local standard time. For each month in the year, three-month centered means (e.g., DJF for 

January) are used to generate three products: i) monthly mean hourly rates, ii) monthly mean daily 

rates, and iii) monthly mean rates. The first product is stored into a 24-element vector, each element 

holding the mean hourly rate (hmean) for each hour of the day. The second product, the mean daily 

rate (dmean), holds a single value corresponding to a mean daily precipitation rate calculated for the 

given month. The last, third product, is a simple monthly mean precipitation rate (mmean). Using 

these three parameters, the diurnal precipitation anomaly ratio (h_anomalyratio) is calculated at each 

hour of the day according to the following equation: 

ℎ_𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑟𝑎𝑡𝑖𝑜 =
ℎ𝑚𝑒𝑎𝑛−𝑑𝑚𝑒𝑎𝑛

𝑚𝑚𝑒𝑎𝑛
(4) 

This ratio describes the amplitude of the diurnal cycle of the precipitation field and provides 

information on how much (on average) a single satellite estimate (for a given local hour) deviates 

from the true daily mean. This information can be used to remove the mean diurnal cycle bias from 

the dataset. After removing the mean diurnal cycle bias, however, a residual uncertainty associated 

with variability in the diurnal cycle remains. This is because the diurnal cycle varies both 

regionally as well as seasonally or over time. These variations are affected by a large number of 

factors. While our approach assumes that to first order most of the diurnal cycle variability relates 

to surface type and precipitation regime (e.g., the west coasts’ stratiform systems, MJO, 

Amazon/Congo convection), this is an assumption that cannot capture the full range of variations 

in the diurnal cycle due to limited data, errors in the ERA5 reanalysis, etc. In our analysis, the 

solution of Eq. (4) is used to create diurnal cycle data at each 5 grid box, over the 5-year period 

from the ERA5 data. With each grid box being characterized by 60 (12 months x 5 years) diurnal 

cycle sinusoid curves, a k-means clustering method is used to identify grid boxes with similar 

diurnal precipitation variability regimes. After iterating through the results for a range between 2 

to 10 clusters, five clusters were identified as those producing distinctive diurnal patterns (shown 

in Fig. 2 for the month of August). These five clusters were named based on the local time and 

amplitude of the anomaly’s peak: High Amplitude Early Peak (HAEP), Low Amplitude Late Peak 

(LALP), High Amplitude Late Peak (HALP), Low Amplitude Early Peak (LAEP) and Medium 
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Amplitude Late Peak (MALP) diurnal types. Fig. 3 offers an insight to the clusters’ spatial 

distribution implying their links to general precipitation regimes. 

With each 5° grid box being characterized by one of the five clusters, diurnal cycle uncertainty 

is defined as the standard deviation of the precipitation ratio anomaly. This uncertainty is 

calculated as a function of a local hour and cluster using all global three-month centered diurnal 

cycle sinusoids. 

Fig. 2 Monthly averages of precipitation diurnal anomaly (for month of August) characterized by five distinct 

clusters: High Amplitude Early Peak (HAEP - red), Low Amplitude Late Peak (LALP - yellow), High Amplitude 

Late Peak (HALP - green), Low Amplitude Early Peak (LAEP - blue) and Medium Amplitude Late Peak (MALP 

- magenta). Data source: ERA5 hourly product, precipitation fields re-gridded into 5 monthly fields for the

period of 5 years (2014-2019).
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Fig. 3 Map of the 5 clusters shown in Fig. 2 (month of August). High Amplitude Early Peak (HAEP), Low 

Amplitude Late Peak (LALP), High Amplitude Late Peak (HALP), Low Amplitude Early Peak (LAEP) and 

Medium Amplitude Late Peak (MALP). 

4) Information Content Uncertainty

In remote sensing theory, the available information content defines how strongly (or loosely) 

the inverse problem can be constrained. PMW observations used for generating precipitation 

estimates in this study come from sensors with different channels and capabilities resulting in 

varying information content related to precipitation. In particular, the footprint sizes and the 

number of observed frequencies and polarizations (i.e., channels) a sensor uses to collect the 

radiometric signature of the underlying atmospheric column greatly affects the accuracy of the 

retrieval. Increased resolution and a greater number of observed frequencies typically deliver 

significantly higher information content, resulting in a more accurate precipitation estimate. To 

estimate the information content contribution to the uncertainties of the precipitation data record, 

GMI is once again considered as a reference standard and used to simulate observations from the 

other sensors, including their channel configuration and sampling geometry. These simulated 

observations are then used to retrieve precipitation, which is assessed against the precipitation 

estimates obtained using the reference standard (i.e., GMI). Since the simulated Tb for each sensor 

is based on the GMI sampling, and thus covers the same spatio-temporal domain as GMI over the 

5-year of GPM-era (2014 – 2019), the resulting differences between the simulated products and
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the GMI-based estimates should come exclusively from the differences in the information content 

between GMI and the simulated sensor (e.g., SSM/I). The GMI level-1 product (2014 – 2019) is 

used to simulate a 7-channel SSM/I, a 9-channel AMSR/TMI, and an 11-channel SSMIS (see 

Table 1) synthetic level-1 data. As the GMI orbit covers only 66N to 66S, all simulated datasets 

in this analysis correspond to same latitudinal region, except for the TMI, which is restricted to the 

TRMM domain (40N to 40S). The FOV resampling process uses the Bachus-Gilbert (1970) 

approach to (de)convolve GMI Tbs to the resolution and sampling of the corresponding sensor. 

For each simulated FOV, sensor-specific (de)convolution coefficients are applied to a 11 x 11 

pixels patch of GMI-observed Tbs (Fig. 4 left panel). Applying an optimized gain function to 

account for sensors’ channel specifications including the sampling geometry of the sensor, Tbs are 

computed for the sensor to be considered using the closest available GMI frequency and 

polarization. The scan-geometry of GMI is thus converted into a pseudo-swath of a simulated 

sensor that is slightly narrower than the original GMI ground track. An example of GMI-SSM/I 

re-sampled geometry is given in Fig. 4 (right panel).  

The pseudo-swath Tbs are delivered at the same channel frequencies as those of GMI but 

reflect their sensor’s spatial resolution and sampling. Therefore, prior to running the retrieval on 

the simulated-sensor pseudo-Tbs, the GPROF a priori database must be adjusted for any 

systematic differences between the two sets of Tbs (pseudo vs. GMI-observed ones). To estimate 

the differences due to the information-content, monthly 5° averaged precipitation estimates for 

each simulated-sensor are compared to those from GMI. The differences are recorded as a function 

of year, month, and location (i.e., grid box). For each month in the year, using the three-month 

centered windows (e.g., DJF for January), the information content uncertainty is defined as 

standard deviation of the corresponding differences. 
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Fig. 4 Spatial distribution of GMI native and SSM/I-simulated scanning pattern. Each SSM/I FOV is derived 

using a centered 11x11 pixel patch of GMI observations. The non-overlapping portion of the GMI swath was 

used only for the (de)convolving purposes, but excluded from GPROF runs comparisons when determining 

information-content variability. 

5) Convective Fraction Uncertainty

Another important contribution to the overall uncertainty comes from the precipitation retrieval 

itself. While the GPROF algorithm (sub-section 2.a.2) is a state-of-the-art enterprise retrieval, it is 

important to consider the impact of errors in the retrieval and their propagation into spatially- and 

temporally-averaged estimates (Elsaesser and Kummerow 2015). For the applications considered 

in this study, many of the retrieval errors make a negligible contribution to the time-averaged large-

scale precipitation products. However, the ability of the retrieval to distinguish between 

radiometrically similar scenes characterized by different precipitation rates, is one that requires 

attention even when considering 5° monthly products. Due to the equal treatment of distinct 

hydrometeor profiles in the GPROF algorithm with similar Tbs, an error introduced to the 

instantaneous precipitation rates becomes a function of precipitation type (Petkovic et al 2017). 

Given that there is no direct information on precipitation type, a proxy for convective fraction over 

a grid box is identified based on surface temperature (Fig. 5). This proxy is thus used to estimate 

the effect of the variability in precipitation systems morphology on the total uncertainty of the 

retrieval’s output. 
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Fig. 5 Convective fraction as a function of Sea Surface Temperature. The relationship uses monthly 5° 

gridded products of DPR global ocean observations and collocated ERA5 Sea Surface Temperatures (SST). Each 

5° grid box has at least 50,000 DPR samples. 

Using estimates from the combined-DPR product over the same five-year GPM-era period, the 

relationship between GPROF precipitation biases and the convective ratio proxy (i.e., 2m 

Temperature from ERA5) is established for each month of the year (Fig. 6) for four different 

surface types and five rainfall rate bins (as defined in sub-section 2.b.1). Uncertainty induced by 

varying the convective fraction is estimated as a standard deviation of precipitation bias over the 

three-month centered periods for each month of the year. 
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Fig. 6. GPROF bias as a function of Sea Surface Temperature – proxy for convective fraction. The 

relationship of monthly 5° gridded product generated from GPROF output for global oceans and collocated 

ERA5 SSTs. Box and whisker bars denote 10th, 25th, 50th, 75th and 90th percentile of the bias values (by count), 

for every 5 K SST. 

6) Calibration Uncertainty

Although the Level 1C Tbs are intercalibrated for consistency between sensors (sub-section 

2.a.1), residual calibration errors likely remain. A number of issues can impact the calibration and

thus the quality of the observed Tb. These include, but are not limited to, permanent or intermittent 

loss of a channel, an increase in the channel noise or NEDT, changes in the orbit and the local 

observing time, deviations in the satellite orientation, and changes in antenna and feedhorn 

properties. To provide an estimate on how these effects may translate to the level-2 products used 

in this study, a set of synthetic experiments is performed. The GPROF retrieval is run multiple 

times using one month of SSMIS simulated observations. With each run, a varying amount of 

noise and/or bias is introduced to the Bayesian error covariance S (see Eq. (1)) and the level-1 

input Tbs, respectively. The retrieval outputs are then used to provide global mean monthly 
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precipitation rates as function of the Tb bias and sensors sensitivity, providing an upper limit on 

possible calibration uncertainty contributions. 

c. Methodology - Combining the Uncertainties

With the five main contributors to the uncertainty defined as described above, and without

accounting for any effects arising from calibration uncertainty causes (sub-section 2.b.6), the total 

uncertainty of the CDR product is calculated using Eq. (3) but accounting for the number of 

observations within each grid box (i.e., sample size). The total uncertainty is computed for each 

5° grid box in units of mm h-1 based on the month of the year, surface type, rain rate, diurnal cycle 

mode, 2-m temperature and the number of samples during the month. Table 2 lists the individual 

components of the uncertainty along with the dimensions and the properties used for assigning the 

uncertainty information to the CDR.  

Uncertainty Dimensions Dependency 

Bayesian/random** [12, 5, 4] Month, Rain Rate, Sfc. Type 

Sampling freq. [12, 4, 720] Month, Sfc. Type, Num. of hourly samples in a month 

Diurnal cycle [12, 5] Month, Cluster ID 

Info. Content** [12] Month 

Conv. fraction [12, 11, 5, 4] Month, 2-m temperature, Rain Rate, Sfc. Type 

Table 2 Uncertainty contributors and their dimensions.  TPW and 2m-Temperature bins are of 1 mm and 5 

K widths, respectively. (**uncertainty calculated for each PMW constellation member separately). 

3. Results (per uncertainty contributor and combined)

The uncertainties for each of the elements listed in Table 2 are presented individually before 

the merged result is shown. 

a. Uncertainty from Random Retrieval Errors

The pixel-level random uncertainty contribution to any monthly-scale product, resulting from

the Bayesian estimation described above, is expected to be small. Table 3. lists mean pixel-level 

Bayesian uncertainties over 5° monthly grids for SSMIS sensor during month of August as a 

function of Surface Type and Rain Rate. They are taken directly from the retrieval output that 

reports these errors based on the brightness temperature fit of various rain profiles and the observed 

Tb. It is notable that uncertainties stay within 0.4 mm h-1 for rain rates characteristic to 5° monthly 

grids (e.g., up to 1 mm h-1). The independent nature of pixel-level random uncertainties and a 
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typically large sample size of observations available to 5° monthly products will yield (see Eq. 

(3)) a total uncertainty from Random Retrieval Errors to be by far the smallest among all 

contributors considered in this study. Bayesian uncertainty for other sensors (not shown here) are 

found to be similar to those of the SSMIS. 

Rain rate [mm h-1] Ocean Land Snow Mixed 

(0.00 – 0.01] 0.007 0.007 0.008 0.012 

(0.01 – 0.10] 0.044 0.034 0.034 0.055 

(0.10 – 1.00] 0.182 0.231 0.286 0.437 

(1.00 – 10.0] 0.759 1.349 1.681 1.934 

(10.0 – inf] 5.821 13.43 16.806 20.012 

Table 3 Mean Bayesian (i.e., random) pixel-level uncertainty for the month of August as a function of the 

surface type and rainfall rate; 5° monthly scale. 

b. Uncertainty Induced by Varying Sampling Frequency

Variability in the sampling frequency of precipitating systems across the globe is driven by the

orbit inclination of the individual satellites and the total number of orbiting sensors at a given time. 

The timeline of sampling frequency over the 30-year period is presented at the end of this section 

(sub-section 3.g). Fig. 7 shows the sampling-induced uncertainty as a function of the number of 

hourly samples during the month of August. While an increase in sampling frequency leads to the 

expected reduction in uncertainty, differences in the amplitude of the sampling uncertainty for 

different surface types depicts the variability in precipitation rate distribution at hourly-to-monthly 

scales (e.g., afternoon convection over ocean vs. random, system-specific events over land and 

costal mixed surface type). 
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Fig. 7 Sampling uncertainty for month of August as a function of the surface type and sampling frequency; 

5° gridded product. 

c. Uncertainty Induced by Variations of Diurnal Cycle

For large-scale climate applications, it is important to account for the fact that sun-synchronous

sensors do not capture diurnal cycle of precipitation. In this study, monthly precipitation rate 

estimate is corrected based on the ratio of the mean daily precipitation rate to the mean estimated 

rate at the local time(s) specific to a given satellites overpass schedule. While this mean correction 

removes the overall diurnal bias, the variability of the diurnal cycle regionally and over monthly 

scales both during and prior to the GPM-era remains and can propagate into the spatially and 

temporally averaged level-3 product. An example of the residual diurnal uncertainty for month of 

August is shown in Fig. 8. Not surprisingly, when comparing the regimes (i.e., surface 

types/clusters), the amplitude of diurnal cycle uncertainty is strongly correlated to the total amount 

of precipitation within a given regime.  The example shown in Fig. 8 may be related to an MJO 

event in the Indian Ocean that has different diurnal characteristics than the background 

precipitation. 
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Fig. 8 Diurnal cycle variability induced uncertainty for month of August as a function of surface type; 5° 

gridded product. 

d. Uncertainty Induced by Variations in Sensor Information Content

As described previously, the information content uncertainty is estimated using GMI as an

absolute reference. Fig. 9 compares the information content uncertainty for each of the 

constellation sensors relative to GMI. Improvements in spatial resolution and the addition of new 

channels for more current sensors leads to a decrease in the information content uncertainty for the 

more recent observations. With similar channels and spatial resolution to GMI, estimates from 

TMI and AMSR2 exhibit the smallest amount of information content uncertainties relative to GMI. 

On the other hand, the limited channel availability and low spatial resolution of the SSM/I sensors, 

made even worse by the loss of the 85 GHz channels on DMSP F08, results in the highest 

information content errors. Because sensors with lower information content will tend to more 

closely follow the retrieval’s database mean, regional biases are not only possible, but highly likely 

as the precipitation differs from its statistical average.  
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Fig. 9 Information content uncertainty for TMI, SSM/I, SSMIS and AMSR2 as a function of month. 

e. Uncertainty Induced by Variations of Convective Fraction of Precipitating Systems

Another consequence of using limited information content to retrieve precipitation rate, are

uncertainties related to the cloud system morphology. Unable to distinguish between precipitation 

types, retrieval uses a same Tb-to-rain-rate relationship for all storm profiles with similar Tb even 

when those storms have significantly different surface precipitation rates. Consequently, seasonal, 

sub-seasonal and regional biases are introduced to instantaneous level-2 precipitation estimates 

and then propagated to the spatially- and temporally-averaged level-3 products. Using GPM GMI 

and DPR observations during the GPM-era, the contribution to the total uncertainty due to 

variations in storm morphology is estimated to be between 0.1–0.4 mm day-1. Table 4 shows the 

convective fraction uncertainty as a function of month. The large variation in the amplitude of the 

uncertainty estimates shown here is related to the prevalence of strong convection which is 

typically associated with high precipitation rate regimes in the global monthly means. 
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Rain rate 

 [mm day-1] 

Temperature [K] 

265 270 275 280 285 290 295 300 

(0.00 – 0.31] - 0.17 0.20 0.18 0.08 0.09 0.12 0.15 

(0.31 – 0.87] 0.19 0.29 0.26 0.26 0.26 0.19 0.25 0.32 

(0.87 – 1.74] 0.30 0.40 0.36 0.41 0.44 0.35 0.40 0.37 

(1.74 – 3.59] 0.42 0.60 0.55 0.62 0.70 0.59 0.66 0.52 

(3.59 – inf] - - 0.92 0.99 1.12 1.05 1.36 1.26 

Table 4 Uncertainty [mm day-1] of long-term 5° girded product induced by variations of Convective 

Fraction, for combined surface types in month of August, as a function of rain rate and temperature. 

f. Estimating Uncertainty Induced by non-optimal Calibration

As explained above, increased sensor noise and/or errors in the calibration can also lead to

increased uncertainties in the precipitation estimates. To provide an estimate on the scale of such 

effects, Table 5 shows what one could expect, in terms of the uncertainty introduced by all 

unaccounted calibration effects to the brightness temperature Level 1C data used in this study. 

Description Global mean 

[mm day-1] 

Global mean bias 

[mm day-1] 

Ocean mean 

[mm day-1] 

Land mean 

[mm day-1] 

Baseline 2.7382 / 2.9400 2.2464 

Low ch. +1K bias 2.8839 0.1457 3.1765 2.1802 

Low ch. 1K noise 2.7292 -0.0090 2.9310 2.2351 

Low ch. +3K bias 3.2429 0.5047 3.7443 2.0624 

Low ch. 3K noise 2.7016 -0.0366 2.8986 2.2132 

High ch. +1K bias 2.6933 -0.0449 2.9371 2.1077 

High ch. 1K noise 2.7299 -0.0083 2.9394 2.2229 

High ch. +3K bias 2.6408 -0.0974 2.9389 1.9355 

High ch. 3K noise 2.7082 -0.0300 2.9367 2.1640 

All ch. +1K bias 2.8395 0.1013 3.1738 2.0432 

All ch. 1K noise 2.7206 -0.0176 2.9304 2.2103 

All ch. +3K bias 3.1528 0.4146 3.7469 1.7720 

All ch. 3K noise 2.6672 -0.071 2.8947 2.1147 

Table 5 Changes in the mean daily global precipitation rate of the SSMIS sensor as a consequence of added 

noise and bias to the level-1 product (i.e., GPROF input). Values correspond to one-month global means (June 

2017). Low channels – less or equal to 37 GHz; High channels – greater or equal to 91 GHz. 

Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-22-0179.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



24 

g. The Overall Uncertainty of long-term Precipitation CDR

The overall uncertainty is estimated by combining the contributors listed in Table 2. The

uncorrelated nature of their origin makes Eq. (3) suitable for calculating the total uncertainty of 

the precipitation data record. Fig. 10 presents global distribution of individual and combined 

uncertainties for the month of August 2017 at 5° resolution. With five available conical-scanning 

radiometers during this month (SSMIS-F17, -F18, -F19, AMSR2 and GMI) the overall uncertainty 

is dominantly driven by convective fraction variability, followed by contributions from sampling, 

diurnal, information content, and random errors. The same hierarchy of the contributors’ 

importance is seen throughout the entire data record.  
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Fig. 10 Monthly mean precipitation data record uncertainties for August 2017 at 5° grid. Available 

sensors: GMI, SSMIS F17, F18, F19 and AMSR2. 

To depict the evolution of the uncertainty during the three decades of passive microwave 

observations, and the effect the introduction of additional sensors has to the precipitation product 

quality, Fig. 11 presents a timeline of several relevant parameters. Notably, the higher sampling 

yields lower uncertainties, while a decline in sensor performance, such as that of SSM/I in late 

1987, strongly decreases the reliability of precipitation data record. The loss of the 85 GHz channel 
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on the SSM/I instrument in the 1980’s, in combination with low sampling, led to the highest 

uncertainty in the record. However, the change in the precipitation rate anomaly related to this loss 

of SSM/I channels significantly exceeds the estimated uncertainty. As the data record evolves, the 

introduction of TMI in the 1990’s, followed by AMSR-E, AMSR2 and GMI in the 2002–2014 

period, mitigates the uncertainty sources related to relatively low information content of SSM/I 

and SSMIS instrument series. 

Low but notable trends in global precipitation rate appear to be well outside the uncertainty 

bars (the blue shade around the mean anomaly shown in the middle panel). However, as discussed 

in the next section, this is not a sufficient condition to qualify the data record as a global 

precipitation trend reference.  

Fig. 11 Timeline of the 34-year global monthly mean precipitation data record (1987-2020) at 5 grid. (Top 

panel) Precipitation monthly anomalies (solid line), its uncertainty (red shade) and mean number of samples per 

grid box (blue). (Middle panel) 7-month running mean global monthly precipitation anomalies, the 

corresponding uncertainty (blue share) and the number of passive microwave instruments contributing to the 

data record (green). (Bottom panel) Individual contributors and total uncertainty of the CDR precipitation 

product.  
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4. Conclusions and discussions

The results presented here consider the main contributors to the uncertainty in a long-term 

global precipitation record obtained from passive microwave conical-scanning satellite sensors 

from the GPROF algorithms. While the choices made in identifying and estimating these 

uncertainties are relatively easy to explain and deliver, combining them into a single uncertainty 

proved challenging. The challenge is twofold.  The first has to do with sensor calibration. Lasting 

2 to 5 times their design-defined lifetime, satellite radiometers, just as any other space-born 

sensors, are exposed to the environment that inevitably affects their performance. Relying on pre-

launch calibration and testing, with no physical access to the instrument, leads to potential errors 

that are not simple to quantify. Simulations of added noise and bias (see sub-section 3.f) suggest 

that realistic effects of those changes exceed the identified trends in large-scale global precipitation 

rate. These time-dependent calibration-induced effects are likely responsible for sensors’ 

occasional but large departures in the mean global precipitation rate. As documented in Fig. 12, 

the sensors from the SSM/I (F08/F10) and SSMIS (F16/F18) series are most prone to this problem. 

The second issue is related to the assumptions in the algorithm. The assumptions in the GPROF 

algorithm that were known to impact convective and stratiform precipitation estimates led to the 

use of convective organization as a predictor of uncertainty during periods where no radars are 

available to quantify the degree of convective organization. However, it is not only possible, but 

even likely, that the algorithm produces biased results, although perhaps with smaller magnitudes, 

in response to other large-scale cloud and precipitation properties. We contend that significant 

work is still needed to not only validate precipitation products, but to learn how to predict 

validation results based on large scale environmental conditions that led to the precipitation.   

Work remains to be done on both calibration methods and predicting algorithm uncertainties. 

One important result of this study, however, is that the uncertainties are not simply random or 

systematic, but have a strong dependence on time and space scales that couple to the source of 

error itself. The full analysis, requiring an examination of which errors persist and which errors 

become small due to natural variability, must be undertaken for each space and time resolution 

under consideration. It is not simply enough to assign an uncertainty to a satellite pixel.  Instead, 

a full elaboration of errors requires each satellite pixel to provide the source of the uncertainty, as 
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well as the time and space correlation of those uncertainties. For now, it may be necessary to 

provide these uncertainties in a post processing step that considers the particular time-space 

resolution of the product – be it instantaneous, 5° monthly, or global monthly time series. 

Fig. 12 Global mean precipitation anomalies (70S to 70N) with uncertainties by satellite. Time series is 

smoothed using a 7-month running mean filter. Shaded color denotes uncertainty of each satellite product. 
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(e.g., Level 1C intercalibrated brightness temperature product and level 3 multi-sensor long-term 

precipitation record). 

APPENDIX 

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System sensor 

AMSR2 Advanced Microwave Scanning Radiometer 2 

CDR Climate Data Records 

CMORPH Climate Prediction Center MORPHing 

DMSP Defense Meteorological Satellite Program 

DPR Dual-frequency Precipitation Radar 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA5 ECMWF atmospheric reanalysis 

FCDR Fundamental Climate Data Record 

FOV Field Of View 

GMI GPM Microwave Imager 

GPCC Global Precipitation Climatology Centre 

GPCP Global Precipitation Climatology Project 

GPM Global Precipitation Measurement 

GPROF Goddard profiling algorithm 

GSMaP Global Satellite Mapping of Precipitation 

HAEP High Amplitude Early Peak 

HALP High Amplitude Late Peak 

IMERG Integrated Multi-satellitE Retrievals for GPM 

IR InfraRed 

LAEP Low Amplitude Early Peak 

LALP Low Amplitude Late Peak 

MALP Medium Amplitude Late Peak 

MHS Microwave Humidity Sounder 

MJO Madden–Julian Oscillation 

NASA National Aeronautics and Space Administration 

NOAA National Oceanic and Atmospheric Administration 

PMW Passive Microwave 

PPS Precipitation Processing System 

SSM/I Special Sensor Microwave/Imager 

SSMIS Special Sensor Microwave Imager/Sounder 

SST Sea Surface Temperature 

Tb Brightness temperature 

TMI TRMM Microwave Imager 

TPW Total Precipitable Water 

TRMM Tropical Rainfall Measuring Mission 

XCAL inter-satellite calibration process 

2mT 2-meter Temperature

Table A1. List of acronyms 

Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-22-0179.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



30 

REFERENCES 

Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project 

(GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeor., 4, 1147–1167, 

https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.  

Adler, R.F., Wang, J.J., Gu, G. and Huffman, G.J., 2009. A ten-year tropical rainfall climatology 

based on a composite of TRMM products. Journal of the Meteorological Society of Japan. Ser. 

II, 87, pp.281-293. 

 Adler, R. F., Gu, G., & Huffman, G. J. (2012). Estimating Climatological Bias Errors for the 

Global Precipitation Climatology Project (GPCP), Journal of Applied Meteorology and 

Climatology, 51(1), 84-99 
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